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ABSTRACT
The immunosuppressive agent sirolimus exerts an antiproliferative effect by inhibiting mammalian target
of rapamycin (mTOR). Because excessive proliferation of the biliary epithelium is a prominent feature of
the polycystic liver that accompanies autosomal dominant polycystic kidney disease (ADPKD), we
hypothesized that sirolimus may benefit patients with this disorder. We retrospectively measured the
volumes of polycystic livers and kidneys in ADPKD patients who had received kidney transplants and had
participated in a prospective randomized trial that compared a sirolimus-containing immunosuppression
regimen to a tacrolimus-containing regimen. Sixteen subjects (seven with sirolimus, nine with tacrolimus)
had received abdominal imaging studies within 11 mo before and at least 7 mo after transplantation,
making them suitable for our analysis. Treatment with the sirolimus regimen for an average of 19.4 mo
was associated with an 11.9 � 0.03% reduction in polycystic liver volume, whereas treatment with
tacrolimus for a comparable duration was associated with a 14.1 � 0.09% increase. A trend toward a
greater reduction in native kidney volume was also noted in the sirolimus group compared with the
nonsirolimus group. Regarding mechanism, the epithelium that lines hepatic cysts exhibited markedly
higher levels of phospho-AKT, phospho-ERK, phospho-mTOR, and the downstream effector phospho-
S6rp compared with control biliary epithelium. In summary, treatment with sirolimus was associated with
decreased polycystic liver volume, perhaps by preventing aberrant activation of mTOR in epithelial cells
lining the cysts.
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Autosomal dominant polycystic kidney disease
(ADPKD) is a life-threatening monogenic disease
with a prevalence of 1 in 400 to 1000 live births.
Polycystic liver disease (PLD) is its most common
extrarenal manifestation in the majority of ADPKD
patients by age 60 yr.1,2 ADPKD is caused by muta-
tions to the genes PKD1 (approximately 85% of the
cases) or PKD2 (the remaining 15%), encoding
polycystin-1 (PC1) and polycystin-2 (PC2), respec-
tively. PC1 is a putative, cell-surface, receptor-like
protein with yet-to-be-identified ligand(s), and
PC2 is a channel protein with a high conductance of
Ca2� (reviewed in Torres et al.3). PC1 and PC2 are
expressed in multiple cellular systems including re-
nal and biliary epithelia. Interaction of PC1 and
PC2 in renal epithelial cells inhibits cell-cycle pro-

gression.4 PKD mutations induce a change in renal
epithelial cell phenotype associated with an activa-
tion in cAMP/Ras/Raf/ERK signaling.5– 8 Down-
stream to this aberrant signaling, mammalian tar-
get of rapamycin (mTOR) is found to be activated
and may contribute to excessive tubular epithelial
cell proliferation and renal cyst expansion.9
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Sirolimus (rapamycin) is a macrocyclic lactone derived
from a strain of Streptomyces hygroscopicus. It inhibits cell
growth and proliferation and promotes apoptosis by inhibiting
mTOR-mediated signaling.10,11 Sirolimus has been used in re-
nal transplant patients as a part of an alternative long-term
immunosuppressive regimen with a comparable or superior
allograft outcome compared to that of calcineurin-containing
immunosuppression.12,13 In recent years, its usage has been
extended, experimentally and clinically, to the treatment of
immunomediated glomerulonephritis,14 an array of tu-
mors,15–17 refractory uveitis, and coating stents to prevent cor-
onary artery restenosis.18,19 Sirolimus has recently been shown
to reduce cystic renal enlargement in animal models of PKD
and the native end-stage cystic kidneys in ADPKD patients
with a functional allograft after renal transplantation.9,20,21

Liver cysts in ADPKD originate from biliary microhemato-
mas or focal proliferations of biliary ductules and from
peribiliary glands. Excessive proliferation of biliary epithelial
cells, combined with neovascularization, altered cell– extracel-
lular matrix (ECM) interaction/ECM remodeling, and cAMP-
mediated fluid secretion, is required for the development and
expansion of PLD liver cysts.22–25

PLD may become symptomatic with acute complications
such as cyst hemorrhage, rupture, and infection. Chronic
symptoms are frequently associated with massively enlarged
PLD, including abdominal distension and pain; dyspnea; gas-
troesophageal reflux and early satiety, which may lead to mal-
nutrition; mechanical lower back pain; obstructions of the in-
ferior vena cava, hepatic and portal veins (leading to dialysis
associated hypotension, hepatic venous outflow obstruction, and
portal hypertension); and biliary obstruction. Currently, apart
from invasive interventions such as cyst aspiration with sclerosis,
cyst fenestration, combined hepatic resection and cyst fenestra-
tion, liver transplantation, and, rarely, selective hepatic artery em-
bolization, no medical treatment is available.26

We have retrospectively examined the effect of sirolimus on
PLD in patients who participated in a prospective, randomized
trial after kidney transplantation comparing sirolimus-myco-
phenolate mofetil-prednisone to tacrolimus-mycophenolate
mofetil-prednisone, and had computed tomography (CT) or
magnetic resonance imaging (MRI) of the abdomen before
and after renal transplantation. The sirolimus-containing reg-

imen for an average duration of 19.4 months (mo) was associ-
ated with a reduction in total liver volume, whereas the liver
volumes continue to increase in patients received nonsirolimus
regimen. Consistent with this observation, mTOR and its down-
stream effector, S6 ribosomal protein (S6rp), were highly acti-
vated in PLD cyst-lining epithelia but not in non-ADPKD liver
sections.

RESULTS

Clinical and Laboratory Characteristics of Renal
Transplant ADPKD Patients with or without Receiving
Sirolimus-Containing Immunosuppression
Sixteen patients, seven on a sirolimus-containing (� siroli-
mus) and nine on a tacrolimus-containing (� sirolimus) reg-
imen, met the inclusion criteria. Diagnoses of ADPKD were
made on the basis of family history and clinical criteria.27 As
shown in Table 1, with the exception of gender, patients in the
sirolimus and tacrolimus groups had comparable demographical,
clinical, and laboratory characteristics at the time of the first im-
aging study. None of the female patients were on oral contracep-
tive or hormone replacement therapy. Total liver volumes in the
two groups at the time of the first imaging were not significantly
different (3.06 � 0.47 versus 2.83 � 0.80 L, P � 0.80).

The adverse effects of sirolimus immunosuppression on
bone marrow elements and serum lipids were examined. At the
time of the second imaging study, five of the seven patients
(71%) in the sirolimus group were on one or two agents (four
and one patients, respectively) for dyslipidemia compared with
five of the nine patients (56%) in the tacrolimus group, all on
single agents. As shown in Table 2, LDL level in the sirolimus
group was significantly higher than that in nonsirolimus group
(122.6 � 19.6 versus 73.1 � 6.7, P � 0.048). Average serum
triglyceride level was also higher (220.3 � 40.0 versus 193.2 �
30.9, P � 0.06). Likewise, platelet counts tended to be lower
(154.3 � 19.9 versus 210.6 � 44.0, P � 0.27) and total choles-
terol concentrations higher (200.9 � 17.5 versus 168.5 � 6.1,
P � 0.12) with sirolimus-containing immunosuppression.

Sirolimus-Containing Immunosuppression Is Associated
with a Reduction in PLD Liver Volume
At the time of the first imaging study, total liver volumes

Table 1. Patient characteristics at the time of the first abdominal image, the interval between the 2 images, and duration
of sirolimus treatment

Mean (range)

� Sirolimus, n � 7 � Sirolimus, n � 9

Age, yr 55.4 (41 to 66) 57.6 (48 to 67)
Gender, female/male 2/5 6/3
Systolic BP, mmHg 134.3 (88 to 180) 128.1 (121 to 155)
Diastolic BP, mmHg 80.9 (55 to 90) 76.3 (66 to 97)
Total liver size, L 3.06 (1.75 to 5.35) 2.83 (1.15 to 9.07)
Duration between 2 scans, months 30 (11 to 58) 28.7 (17 to 46)
Duration of sirolimus treatment, months 19.4 (7 to 40) —
Serum sirolimus concentration, ng/ml 14.3 (7.8 to 17.9) —
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ranged from 1148 to 9072 ml (Table 1). Five of the seven pa-
tients in the sirolimus group and six of the nine patients in the
tacrolimus group had total liver volumes �2000 ml. As shown
in Figure 1A, the sirolimus group showed a decrease (�11.85%
� 0.03) in total liver volume, whereas the tacrolimus group
showed an increase (�14.13 � 0.09, P � 0.009) in total liver
volume. A suggestive but not statistically significant correla-
tion between the duration of sirolimus exposure and reduction
in liver volume was observed (r � �0.452, P � 0.12) (Figure
1B). The changes in liver volume for each individual patient are
shown in Figure 2. Representative series of transaxial CT scans
from an ADPKD patient before and after 15.5 mo of sirolimus-
containing immunosuppression (Figure 3) illustrate the re-
duction in the size and number of liver cysts. Because the mean
interval (30 mo) between the two scans in the sirolimus treated
patients was greater than the mean duration of treatment (19.4
mo), it is possible that sirolimus effect might have been under-
estimated.

Sirolimus-Containing Immunosuppression Is Associated
with a Trend toward a Greater Reduction in Native
Polycystic Kidney Volume
Shillingford et al. have shown that sirolimus-containing im-
munosuppression, given to ADPKD patients after renal trans-
plantation, is associated with a shrinkage of the native cystic

kidney volume.9 The renal volumes of six patients on sirolimus
(one patient had bilateral nephrectomy, one had right-sided
nephrectomy) and seven on nonsirolimus (two had bilateral
nephrectomy, one had left-sided nephrectomy) were mea-
sured. As shown in Figure 4, the average renal volume in the
sirolimus group was reduced by 14.76 � 0.08% and 15.03 �
0.08% versus 10.9 � 0.06% and 9.0 � 0.06%, right and left
kidneys, respectively, in the nonsirolimus group. Notably, with
the exception of a prominent reduction in kidney volume in a
sirolimus-treated patient, the changes of kidney volume in
both groups appeared broadly similar. Overall, the renal vol-
ume changes between the two groups were not statistically dif-
ferent, P � 0.38 and 0.28 for right and left kidneys, respectively.

PLD Cyst-Lining Epithelia Show an Elevated mTOR
Signaling
We examined the phosphorylated, activated form of mTOR in
the liver sections from two ADPKD patients and two non-
ADPKD controls. As shown in Figure 5, compared with nor-
mal biliary epithelia and noncystic areas of PLD, the cyst-lining
epithelia exhibits intense cytoplasmic staining of active phos-
pho-mTOR. Consistent with this finding, phospho-S6rp, a
downstream mTOR effector, was also activated in the cyst ep-
ithelium (Figure 6, E to F). The activation of mTOR signaling
may occur downstream to the activation of ERK and AKT,
both are activated in PLD (Figure 6, G to J).

Table 2 Laboratory parameters before and after the sirolimus-containing and sirolimus-sparing immunosuppression

� Sirolimus, mean (range) � Sirolimus, mean (range)

1st Scan 2nd Scan 1st Scan 2nd Scan

HGB, g/dl 11.8 (9.4 to 15.4) 13.3 (11.8 to 16.8) 12.9 (10.1 to 14.4) 12.6 (9.7 to 14.7)
Platelet, 109/L 172.1 (151 to 214) 154.3 (76 to 249) 200 (89 to 338) 210.6 (65 to 523)
Serum creatinine, mg/dl 3.59 (2.3 to 9.7) 1.46 (0.8 to 2.4) 5.86 (1.3 to 7.5) 1.48 (1.1 to 2.3)
Total cholesterol, mg/dl 173.9 (149 to 195) 200.9 (128 to 265) 196.7 (121 to 337) 168.5 (145 to 204)
LDL, mg/dl 101.6 (80 to 135) 122.6 (81 to 209)* 90.8 (60 to 117) 73.1 (41 to 105)*
HDL, mg/dl 43.9 (29 to 87) 46.7 (12 to 70) 48.3 (35 to 60) 51.6 (25 to 77)
Triglyceride, mg/dl 168.9 (53 to 441) 220.3 (127 to 434) 264.2 (55 to 687) 193.2 (102 to 392)
Albumin g/dl 4.1 (3.7 to 4.5) 3.9 (3.4 to 4.4) 3.9 (3.3 to 4.8) 4.1 (3.7 to 4.3)
*Statistically significant difference between � sirolimus group and � sirolimus group at the time of the second scan.

Figure 1. (A) Average changes in the liver volume in autosomal
dominant polycystic kidney disease (ADPKD) patients with or
without receiving sirolimus. (B) Reduction in total liver volume
plotted as a function of the duration of sirolimus treatment.

Figure 2. Total liver volume in each individual patient at the first
and second imaging studies. Each circle or square represents a
single subject.
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DISCUSSION

This study demonstrates that a sirolimus-containing immuno-
suppressive regimen is associated with a reduction in polycys-
tic liver volume, presumably through inhibition of mTOR.
Consistent with this interpretation, we show that PLD cyst-
lining epithelia express high levels of activated mTOR and its
downstream effector, p-S6rp.

mTOR is a serine/threonine protein kinase, activated by a
Ras-related GTPase, Rheb (Ras homolog enriched in the
brain). Rheb is deactivated by a Rheb-GTPase activating pro-
tein (RhebGAP) function of the tuberin-hamartin complex.28

Tuberin is known to be phosphorylated by ERK and AKT at
multiple sites, with a resultant dissociation from the tuberin-
hamartin complex. This dissociation interrupts the tuberin-
hamartin complex–mediated Rheb inhibition, leading to an
augmented mTOR signaling.29,30 The finding of highly acti-
vated ERK and AKT in the PLD cyst-lining epithelium (Figure
6, G to J) is consistent with the possibility of ERK/AKT-medi-
ated mTOR activation.

mTOR forms two distinct protein complexes within mam-
malian cells, regulatory-associated protein of TOR (raptor)
and rapamycin-insensitive companion of TOR (rictor).31,32

mTOR-Raptor complex, inhibited by sirolimus, promotes cell
growth by at least two mechanisms. First, mTOR-raptor com-
plex phosphorylates the S6rp kinase and S6rp, thereby aug-
menting protein translation and ribosomal biogenesis.33 Sec-
ond, it inactivates (by phosphorylation) the eukaryotic
initiating factor 4E (eIF4E)-binding protein (4E-BP1), disso-
ciating 4E-BP1 from the RNA cap-binding protein eIF4E, pro-
moting cap-dependent mRNA translation.34 Sirolimus has
been shown to bind the FKBP-rapamycin-binding domain of
mTOR. This binding destabilizes the association between

Figure 3. Representative series of transaxial computed tomog-
raphy sections obtained from an ADPKD patient at the mid-level
of the liver before (left column) and after (right column) 15.5 mo
of the sirolimus-containing immunosuppressant shows a reduc-
tion in the size and number of liver cysts. The top cuts of the two
computed tomography series are aligned at the center of a
partially calcified cyst.

Figure 4. The changes of the native polycystic kidneys at the first
and second imaging studies. A and C show average changes,
mean and SEM, of right and left kidney volumes in patients with
or without receiving the sirolimus-containing immunosuppres-
sion. B and D show the total right and left kidney volumes in each
patient at the time of the first and second imaging studies.
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mTOR and raptor, preventing the downstream phosphoryla-
tion of S6rp kinase/S6rp and 4E-BP1.35

Although previous studies suggest that mTOR-rictor com-
plex is insensitive to sirolimus, recent reports raise the possi-
bility that sirolimus may also affect mTOR-rictor signaling.

mTOR-Rictor complex modulates cellular proliferation by
phosphorylating the survival factor AKT at Ser 473.36,37 In
breast cancer and anaplastic large-cell lymphoma cells, siroli-
mus treatment reduces the number of viable cells and pro-
motes chemotherapy-induced apoptosis. These effects are as-

Figure 5. Phospho-mammalian target of rapamycin (mTOR) expression is elevated in polycystic liver disease (PLD) cyst-lining epithelia.
Liver sections from two normal subjects (A and B) and two PLD patients (C to F) were immunostained with antibody against Ser2448
phospho-mTOR. PLD cyst-lining epithelial cells from both ADPKD patients showed intense staining for phospho-mTOR (C and D,
enlarged views in G to I). The phospho-mTOR was nondetectable in the biliary epithelia from normal controls (A and B) and almost
nondetectable in the noncystic biliary epithelia at portal triads (E and F) of the same PLD sections as in C and D.

Figure 6. The expression of effectors of phospho-mTOR, phospho-S6 ribosomal protein and phospho-AKT are elevated in PLD
cyst-lining epithelia. Liver sections from a normal subject were immunostained with antibodies that specifically recognize mTOR
downstream effector, p-S6rp (A) and p-AKT (B). Consecutive PLD sections from an ADPKD patient (C, E, G, and I) were immunostained
with antibodies against Ser2448 p-mTOR (C), Ser240/244 p-S6rp (E), Ser473 p-AKT (G), and Thr202/Tyr204 p-ERK (I). D, F, H, and J are
enlarged views of C, E, G, and I, respectively. PLD cyst-lining epithelia show a high level of staining for activated mTOR, S6rp, AKT, and
ERK, whereas the normal biliary epithelia show nondetectable p-S6rp (A) and p-AKT (B).
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sociated with reductions in both phospho-mTOR (Ser2448p-
mTOR) and phospho-AKT (Ser473p-AKT), possibly via direct
and indirect mechanisms.38 – 41

The role of aberrant mTOR activation in promoting cystic
liver enlargement is supported by the observation of a uniform
reduction in liver volume in patients receiving sirolimus-con-
taining regimen. Because female ADPKD patients tend to have
more progressive PLD growth associated with estrogen expo-
sure, the higher number of females in the nonsirolimus group
might potentially have contributed to the difference detected
between the two groups. However, this is unlikely because
male patients rather than female patients in the nonsirolimus
group had the most pronounced liver growth. As shown in
Figure 2B, the two patients with the largest percentage liver
volume increase were males. One female patient with a liver
volume of 9.07 L before renal transplantation actually showed
a reduction, possibly as a result of a nearly maximal degree of
abdominal distension. Furthermore, a uniform liver volume
reduction, observed in the sirolimus group (Figure 2A), would
be highly atypical and defy the natural course of PLD. Taken
together, the gender distribution could not explain the obser-
vations in this study.

Another potential explanation for these results is that the
detected difference is related to the avoidance of calcineurin
inhibitors rather than the exposure to sirolimus. Indeed, one of
the functions of PC1 is to activate calcineurin/NFAT (nuclear
factor of activated T cells) signaling.42 The use of a calcineurin
inhibitor (cyclosporine) has been associated with a higher fre-
quency of acquired cystic kidney diseases after renal transplan-
tation.43 However, because PC1-mediated calcineurin/NFAT
activation is presumably disrupted in ADPKD, further inhibi-
tion with calcineurin inhibitor may exert lesser effect. The con-
sistent reduction in liver volume with sirolimus also renders
this explanation unlikely.

We have examined the volumes of native polycystic kidneys
after renal transplantation in our patients. Consistent with a
previous report,9 the reduction in the native kidney volume
tends to be more pronounced in the patients treated with
sirolimus. However, the difference did not reach a statistical
significance (Figure 4). This could possibly result from the
small number of patients. It is also possible that sirolimus given
orally is more efficacious in treating polycystic liver than poly-
cystic kidney disease. Sirolimus is absorbed in the small intes-
tine and undergoes an extensive presystemic metabolism by the
intestinal and hepatic cytochrome P-450 system (CYP3A4), fol-
lowed by biliary excretion of its metabolites. At least two of the six
identified metabolites have retained immunosuppressive activi-
ty.44,45 This presystemic biliary exposure to sirolimus/its active
metabolites, combined with a reduced drug delivery to end-stage
polycystic kidneys as a result of compromised renal blood flow,
may in part account for the observed differential efficacy of siroli-
mus in the polycystic liver and kidneys.

Because liver volume, not derangement of liver function, is
the major source of morbidity and mortality in PLD, the ob-
servation of a significant reduction in polycystic liver volume

with sirolimus-containing regimen is encouraging. Although a
prospective, confirmatory study is necessary, sirolimus shows
promise as a potential treatment option for severe PLD.

CONCISE METHODS

Clinical Data Collection
The study was approved by the Institutional Review Board of the

Mayo Clinic College of Medicine. The records of ADPKD patients,

diagnosed by clinical criteria, who participated in a prospective, ran-

domized trial in kidney transplantation, including ADPKD and non-

ADPKD renal transplant recipients, comparing sirolimus-myco-

phenalate mofetil-prednisone to tacrolimus-mycophenalate mofetil-

prednisone at Mayo Clinic in Rochester, Minnesota, between April

2001 and January 2006 were reviewed.12 Of 116 ADPKD patients, 16

patients met the following criteria: (a) PLD evident on imaging stud-

ies; (b) on sirolimus-containing or calcineurin inhibitor– based im-

munosuppression initiated at the time of renal transplantation and

not switched from one group to the other during the period of obser-

vation; (c) on the same immunosuppressive for �6 mo; (d) abdom-

inal imaging study (CT or MRI) obtained within 12 mo before the

renal transplantation and, for the patients on sirolimus-containing

regimen, the repeated imaging while on sirolimus or within 11 mo

after the termination of sirolimus (in cases where sirolimus was ter-

minated); and (e) absence of cyst reductive procedures or liver trans-

plant. Seven patients on sirolimus-containing and nine on nonsiroli-

mus regimen met these criteria and were included. Their

characteristics are summarized in Table 1. Laboratory parameters at

the times of the first and second scans are summarized in Table 2.

Volumetric Determination of the Liver and Native
Kidney
The total volumes of the cystic livers and kidneys were measured by a

nephrologist (Q.Q.) and a radiologist (B.F.K.) blinded to the patients’

immunosuppressive regimens. Single breath-hold CT scans, which

demonstrated negligible artifacts from respiration, were used for 29 of

the 32 acquisitions with or without intravenous contrast. The remain-

ing three were obtained with MRI. CT scanning parameters were 120

kVp, 380 mA, 512 � 512 acquisition matrix, 5 to 7 mm collimation, 1

pitch, and 5 to 7 mm increment with no overlap. MRI parameters

were repetition time 2150 ms, echo time 30.0 ms, nex 1.0, 256/128

acquisition matrix, 8 or 15 mm slice thickness. Digital images were

reviewed on PC workstation. The cross-sectional areas of each cut-

slice were measured using a standard software system (QREADS) at

Mayo Clinic, Rochester. Each cross-sectional area was outlined and

the software generated a numeric number of the area (in mm2). The

volume of each cut-slice (in mm3) was calculated by multiplying the

cross-sectional area by the thickness of the slice. Two separate mea-

surements were performed. The variation was minimal, and the aver-

age was used for analysis.

Immunohistochemistry
Five-micrometer sections from formalin-fixed, paraffin-embedded

blocks were deparaffinized in xylene and hydrated with 100%, 95%,
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70% ethanol serially; then the sections were exposed to 1.5% H2O2

(Sigma-Aldrich, St. Louis, MO) to quench endogenous peroxidases

(�30min) and incubated in proteinase K (Chemicon, Temecula, CA)

(�30min, 37°C) for antigen retrieval. Nonspecific binding was

blocked by normal (rabbit) blocking serum (Vector Laboratories,

Burlingame, CA). The sections were incubated with rabbit anti-phos-

pho-mTOR (Ser2448) (Abcam, Cambridge, MA), anti-phospho-Akt

(Ser473), anti-phospho-ERK (Thr202/Tyr204), and anti-phospho-

S6rp (Ser240/244) antibody (Cell Signaling Technology, Beverly,

MA) in normal blocking serum (overnight at room temperature) in a

humidified chamber. The sections were then incubated with appro-

priate biotinylated secondary antibody and with VECTASTAIN elite

ABC reagent (Vector laboratories). To enhance nuclear detail, all

slides were counterstained with hematoxylin and then mounted with

mounting media (Fisher Scientific, Kalamazoo, MI).

Statistical Analyses
The numerical values of the liver and kidney volumes for each patient

were compared. The data from sirolimus and nonsirolimus groups

were compared using the t test. Results were expressed as mean �

SEM. P � 0.05 was considered significant.
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