High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent's disease.

Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, Guggino SE.

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

BACKGROUND: Dent's disease, an X-linked renal tubular disorder, is characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive renal failure. Dent's disease results from mutations of the voltage-gated chloride channel ClC-5.

METHODS: We studied the effect of zero and high citrate diet on renal function of ClC-5 knockout mice and wild-type mice. The mice were placed in metabolic cages from which the urine was collected. Mice were sacrificed to obtain serum and tissues for analysis. RESULTS: ClC-5 knockout mice fed zero or high citrate diet had significantly increased urinary calcium excretion compared with wild-type mice fed the same diets. Nine-month-old ClC-5 knockout mice on a zero citrate diet had significantly decreased glomerular filtration rate (GFR), whereas 9-month-old ClC-5 knockout mice on a high citrate diet had normal renal function. ClC-5 knockout mice fed a zero citrate diet had significantly increased tubular atrophy, interstitial fibrosis, cystic changes, and nephrocalcinosis compared to ClC-5 knockout mice fed a high citrate diet. Transforming growth factor-beta1 (TGF-beta1) was significantly increased in 9-month-old ClC-5 knockout mice on zero citrate diet compared to 9-month-old wild-type mice on the same diet.

CONCLUSION: High citrate diet preserved renal function and delayed progression of renal disease in ClC-5 knockout mice even in the apparent absence of stone formation. We conclude from this that long-term control of hypercalciuria is an important factor in preventing renal failure in these mice.