Small-Molecule CFTR Inhibitors Slow Cyst Growth in Polycystic Kidney Disease

Baoxue Yang,* Nitin D. Sonawane,* Dan Zhao,* Stefan Somlo,† and A. S. Verkman*

*Departments of Medicine and Physiology, University of California, San Francisco, California; and †Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut

ABSTRACT

Cyst expansion in polycystic kidney disease (PKD) involves progressive fluid accumulation, which is believed to require chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Herein is reported that small-molecule CFTR inhibitors of the thiazolidinone and glycine hydrazide classes slow cyst expansion in in vitro and in vivo models of PKD. More than 30 CFTR inhibitor analogs were screened in an MDCK cell model, and near-complete suppression of cyst growth was found by tetrazolo-CFTRinh-172, a tetrazolo-derived thiazolidinone, and Ph-GlyH-101, a phenyl-derived glycine hydrazide, without an effect on cell proliferation. These compounds also inhibited cyst number and growth by >80% in an embryonic kidney cyst model involving 4-d organ culture of embryonic day 13.5 mouse kidneys in 8-Br-cAMP-containing medium. Subcutaneous delivery of tetrazolo-CFTRinh-172 and Ph-GlyH-101 to neonatal, kidney-specific PKD1 knockout mice produced stable, therapeutic inhibitor concentrations of >3 μM in urine and kidney tissue. Treatment of mice for up to 7 d remarkably slowed kidney enlargement and cyst expansion and preserved renal function. These results implicate CFTR in renal cyst growth and suggest that CFTR inhibitors may hold therapeutic potential to reduce cyst growth in PKD.

Polycystic kidney disease (PKD) is characterized by massive enlargement of fluid-filled cysts of renal tubular origin that compromise normal renal parenchyma and cause renal failure.1–6 Human autosomal dominant PKD (ADPKD) is caused by mutations in one of two genes, PKD1 and PKD2, encoding the interacting proteins polycystin-1 and polycystin-2, respectively.4,7–10 Cyst growth in PKD requires fluid secretion into the cyst lumen coupled with epithelial cell hyperplasia.

In vitro data implicate epithelial chloride secretion in generating and maintaining fluid-filled cysts.11–14 The cystic fibrosis transmembrane conductance regulator protein (CFTR), a cAMP-regulated chloride channel, is believed to provide the principal route for chloride entry into expanding cysts. CFTR is expressed in the apical membrane of cyst-lining epithelial cells in PKD kidneys.13,15 A CFTR inhibitor discovered by our laboratory, CFTRinh-172,16 has been shown to slow cyst growth in an MDCK cell culture model of PKD14 and in metanephric kidney organ cultures.17 In families affected with both ADPKD and cystic fibrosis, individuals with both ADPKD and cystic fibrosis had less severe renal disease than those with only ADPKD.18,19 These findings provide a rational basis for evaluation of CFTR inhibitors in ADPKD therapy.

We have identified, by high-throughput screening, two types of CFTR inhibitors that block, by different mechanisms, CFTR chloride channel...
function. CFTR\textsubscript{inh}−172 is a thiazolidinone that reversibly inhibits CFTR Cl− channel function19 (Figure 1). Patch-clamp analysis indicated that CFTR\textsubscript{inh}−172 stabilizes the channel’s closed state, probably by binding to a cytoplasmic domain of CFTR.20 After intravenous bolus infusion in rodents, CFTR\textsubscript{inh}−172 was concentrated in the kidney and urine with respect to blood and was excreted with little metabolism.21 The glycine hydrazides (e.g., GlyH-101; Figure 1) bind directly to the CFTR pore at a site near its external entrance.22 We synthesized membrane-impermeable GlyH-101 analogs, including conjugates to polyethylene glycols23 and lectins,24 that block CFTR Cl− current from the cell exterior.

Here, we evaluated and optimized CFTR inhibitors for PKD therapy. We screened a panel of thiazolidinones and glycine hydrazides with improved properties over CFTR\textsubscript{inh}−172 and GlyH-101 for their efficacy in inhibiting cyst growth in an in vitro MDCK cell model. The best compounds were then tested in an embryonic kidney organ culture model and in vivo using a Pkd1fllox/H9262;Ksp-Cre mouse model of postnatal ADPKD.

RESULTS

CFTR Inhibitors Reduce Cyst Formation and Growth in an MDCK Cell Cyst Model

An MDCK cell model of PKD was used to screen 32 CFTR inhibitors of the thiazolidinone and glycine hydrazide classes for reducing cyst formation and expansion. Cells were cultured in a collagen matrix containing 10 μM forskolin. Cysts were seen at 3 to 4 d, progressively enlarging during the next 8 d (Figure 2A, top). Cysts did not form in the absence of forskolin (data not shown). Exposure of established cysts (>50 μm in diameter on day 4) to a CFTR inhibitor (compound T08) at 10 μM for 8 d slowed cyst enlargement (Figure 2A, middle). Inhibition was reversible as shown by exposure to inhibitor at days 4 through 8 followed by washout (Figure 2A, bottom).

![Figure 1. Structures of CFTR inhibitors. Chemical structures of CFTR\textsubscript{inh}−172 (thiazolidinone class) and GlyH-101 (glycine hydrazide class). Shown also are analogs tetrazolo-CFTR\textsubscript{inh}−172 and Ph-GlyH-101, which had best properties for inhibition of renal cyst expansion.](image)

Thirty-two CFTR inhibitors (at 10 μM) were screened in the MDCK cell model. Compound structures together with their approximate CFTR inhibition potencies (expressed as IC\textsubscript{50} values) are provided in Figures 3 and 4. Eight compounds inhibited cyst growth by >70% (Figure 2B). For testing whether inhibition of cyst growth could be related to cytotoxicity, cell viability was assayed by crystal violet staining. At 20 μM, compounds T09, T12, T13, G04, and G05 reduced MDCK cell viability, whereas compounds T08, T14, G03, G07, and G16 did not (Figure 2C).

Cyst growth was measured from days 4 through 12 with compounds T08, T10, G07, and G16 at 1, 5, and 10 μM. Compounds G07 (a glycine hydrazide analog) and T08 (a thiazolidinone analog) strongly inhibited cyst enlargement at 1 μM (Figure 2D).

For examination of effects on cyst formation, MDCK cells were incubated from day 0 with compounds (at 10 μM) in the presence of forskolin. On day 6, we counted spherical cysts (with diameter >50 μm) and noncyst cell colonies. Figure 2E shows that the total numbers of colonies (cysts plus noncyst colonies) were similar in the control and inhibitor-treated groups. Compounds T08, T14, G07, and G16 greatly reduced the number of cysts. CFTR\textsubscript{inh}−172 also inhibited cyst formation but to a lesser extent. Compounds T08 and G07, representing the most potent (and nontoxic) compounds of the glycine hydrazide and thiazolidinone classes, respectively, were further evaluated.

CFTR inhibition potency was confirmed in MDCK cells by short-circuit current analysis. Figure 2F shows the concentration-dependent inhibition of short-circuit current after CFTR simulation by forskolin, with IC\textsubscript{50} of approximately 1 μM. Compounds T08 and G07 were tested in cell proliferation and apoptosis assays. Figure 2G shows that at 10 μM, these compounds did not inhibit MDCK cell proliferation or cause apoptosis. Figure 2H shows that these compounds did not alter CFTR expression as seen by similar short-circuit current in MDCK cells after 1 versus 48 h of incubation with 10 μM T08 or G07 followed by washout.

CFTR Inhibitors Retard Cyst Development and Growth in Embryonic Kidney Culture

An embryonic kidney organ culture model was used to evaluate further compounds T08 and G07. Embryonic kidneys from wild-type embryonic day 13.5 (E13.5) mice were cultured for 4 d in the absence or presence of 100 μM 8-Br-cAMP. In the absence of 8-Br-cAMP, kidneys increased in size over 4 d (Figure 5A, top), whereas numerous cystic structures were seen in the presence of 8-Br-cAMP (Figure 5A, bottom). Figure 5B shows that compounds T08 and G07 remarkably reduced cyst formation, as confirmed by quantitative image analysis (Figure 5C). In control studies, cysts formed after compound washout after 2-d treatment (Figure 5D, top), indicating reversible action of CFTR inhibitors. Also, kidney growth in the absence of 8-Br-cAMP was not affected by the CFTR inhibitors. After 4 d in culture,
Kidney lengths were 1.48 ± 0.10 (T08-treated), 1.42 ± 0.08 (G07-treated) and 1.46 ± 0.08 mm (control).

Paraffin sections are shown in Figure 5E. In the absence of 8-Br-cAMP, after 4 d in culture, renal tubules and primitive distal ramifications of the ureteric bud formed. Large cystic structures were seen throughout the kidney in the presence of 8-Br-cAMP. Compounds T08 and G07 reduced the number and size of cysts. The apoptotic index was <1% in kidneys exposed to T08 or G07 at 20 μM (data not shown).

Figure 2. CFTR inhibitors slow growth of MDCK cell cysts in cell culture. (A) Representative light micrographs of MDCK cell cyst growth in collagen gels. (B) Bar graph of cyst diameters for indicated compounds (SE, n = 30 cysts analyzed per compound). (C) CFTR chloride current was stimulated by 20 μM forskolin. (D) MDCK cell proliferation measured by BrdU incorporation (SE, n = 3, *P < 0.05). Where indicated, T08 or G07 was present in the medium for 72 h. DMSO was used as negative control. Gentamicin (2 mM) was used as positive control.

CFTR Inhibitors Slow Cyst Development in a Pkd1flx/−;Ksp-Cre Mouse Model of ADPKD

Mass spectrometry was used to assay compound concentration in urine and kidney homogenates. Representative HPLC and mass chromatograms are provided in Figure 6A, showing 50-pM sensitivity. Tetrazol-CFTRinh-172 (compound T08) and Ph-GlyH-101 (compound G07) were detected by absorbance at 386 and 338 nm, respectively, with mass traces of m/z 433.4 Da and 553.2 Da. Assays were linear over 0.05 to 15 μg/ml, with 0.01 μg/ml detection limit. Assay sensitivity and specificity were confirmed by addition of known quantities of inhibitors to urine from non–compound-treated mice (Figure 6B).
Concentrations were measured to establish dosing to give sustained concentrations in kidney/urine of >1 μM, where CFTR is inhibited. Kidney and urine samples were obtained from mice after 4-times-daily subcutaneous administration for 3 d at 5 mg/kg per d, a dosage regimen determined from preliminary studies. Urinary concentrations were measured at 1 and 5 h after the final dosing. For tetrazolo-CFTRinh-172, urine concentrations were 3.3 and 3.6 µM at 1 and 5 h, respectively. The urine concentrations of Ph-GlyH-101 were 4.3 and 5.8µM at 1 and 5 h after 4-times-daily subcutaneous administration for 3 d.

Figure 7A shows central coronal kidney sections. Although there was considerable mouse-to-mouse variability, kidney sections from T08- and G07-treated wild-type mice were similar to those in untreated control mice (Figure 7B). Kidney weight in Pkd1fllox/−;Ksp-Cre mice was more than three-fold higher than in wild-type mice. Treatment of Pkd1fllox/−;Ksp-Cre mice with compounds T08 or G07 reduced kidney weight significantly compared with vehicle-treated Pkd1fllox/−;Ksp-Cre mice. Image analysis of hematoxylin- and eosin-stained sections showed remarkably fewer total numbers of cysts (of >50 μm in diameter) per kidney in T08- and G07-treated mice (797 ± 69, control; 457 ± 32, T08; 316 ± 45, G07), with reduced numbers of medium- and large-size cysts (Figure 7C).

Another group of mice was treated with T08 and G07 for 7 d.
(“day 9” kidneys), when significant reduction in renal function was found in untreated Pkd1flox/−;Ksp-Cre mice. Figure 7D shows mild elevations in serum creatinine and urea in vehicle-treated Pkd1flox/−;Ksp-Cre mice (compared with wild-type mice) at 3 d (“day 5” kidneys), with more marked elevations at day 9. Serum creatinine and urea were significantly reduced in T08- and G07-treated Pkd1flox/−;Ksp-Cre mice, although not as low as in wild-type mice.

DISCUSSION

The goals of this study were to establish the efficacy of small-molecule CFTR inhibitors to retard cyst expansion in PKD and to select the best thiazolidinone- and glycine hydrazide–class CFTR inhibitors. We used three distinct experimental models of cystic kidney disease to obtain proof of concept for small-molecule CFTR inhibitors for therapy of PKD. Screening of 32 thiazolidinone and glycine hydrazide analogs in MDCK cell culture identified compounds that strongly reduced cyst number and growth, without toxicity or inhibition of cell proliferation. The best compounds had low micromolar potency and were effective in inhibiting cyst growth in embryonic kidney organ cultures. After establishing conditions for compound administration to neonatal mice to achieve “therapeutic” concentrations in kidneys and urine, the best CFTR inhibitors partially inhibited cyst growth and preserved renal function in a mouse model of ADPKD.

cAMP signaling plays an important role in renal cyst development. Cyst growth in PKD involves fluid secretion into the cyst lumen coupled with epithelial cell hyperplasia. As described at the beginning of this article, in vitro data implicate epithelial chloride secretion in the generation and maintenance of fluid-filled cysts. As in other secretory epithelia, fluid secretion into the cyst lumen occurs by primary chloride exit across the cell apical mem-

Figure 4. Structures of glycine hydrazide and malonic acid hydrazide CFTR inhibitors with their CFTR inhibition activity. IC50 values for G01 through G05 and G8 through G16 were as reported. IC50 for G06 and G07 were determined by short-circuit current analysis.
brane, which secondarily drives transepithelial sodium and water secretion. Luminal fluid accumulation causes progressive cyst expansion directly by net water influx into the cyst lumen and indirectly by stretching cyst wall epithelial cells to promote their division and thinning.11,13,31 CFTR inhibition interferes with fluid secretion at the apical chloride exit step.

MDCK type I cells, which endogenously express CFTR,32 provide a useful in vitro model of cystogenesis for screening of candidate inhibitors of cyst formation and growth. Culture of MDCK cells in three-dimensional collagen gels produces a polarized, single-layer, thinned epithelium surrounding a fluid-filled space, apical external-facing microvilli, a solitary cilium, and apical tight junctions.33–35 MDCK cells in cysts undergo proliferation, fluid transport, and matrix remodeling, as seen in tubular epithelial cells cultured from PKD kidneys. Cyst formation and growth are cAMP dependent, which is thought to increase independently cell proliferation and activate CFTR-facilitated transepithelial fluid secretion.26–31 Recognizing its limitations, such as differences between MDCK versus renal epithelial cells and cell cultures versus intact kidneys, the MDCK cyst model identified CFTR inhibitors that reduced cyst formation and enlargement without demonstrable cell toxicity or inhibition of cell proliferation.

The embryonic kidney culture model permits organotypic

Figure 5. CFTR inhibitors slow cyst growth in embryonic kidney organ cultures. Embryonic kidneys were placed in culture at day E13.5 and maintained for 4 d. (A) Kidney appearance by transmitted light microscopy for cultures in the absence (top) or continued presence (bottom) of 100 \(\mu \text{M} \) 8-Br-cAMP. Each series of photographs shows the same kidney on successive days in culture. Bar = 1 mm. (B) Inhibition of cAMP-induced cyst growth by compounds T08 and G07. Images shown of embryonic kidneys before (day 0) and 4 d after compound addition. Bar = 1 mm. (C) Fractional cyst area in control and CFTR inhibitor–treated kidneys (SE, \(n = 6 \) to 12, *\(P < 0.05 \), **\(P < 0.01 \) versus control). (D) Reversible inhibition of cyst growth. Compound T08 was added for 2 d (top) or 4 d (bottom) in culture medium containing 100 \(\mu \text{M} \) 8-Br-cAMP. Bar = 1 mm. (E) Histology (hematoxylin and eosin staining) of embryonic kidneys. Bar = 1 mm.
growth and differentiation of renal tissue in defined media without the confounding effects of circulating hormones and glomerular filtration. In metanephric organ culture, the early mouse kidney tubule has an intrinsic capacity to secrete fluid in response to cAMP by a CFTR-dependent mechanism. The CFTR inhibitors T08 and G07 reversibly inhibited cyst formation and growth in embryonic kidneys. Although embryonic kidney cultures probably represent a better PKD model than MDCK cells, they are avascular and nonperfused and therefore are not exposed to the same environment as in vivo kidney.

We used Pkd1floxed-Ksp-Cre mice, which are kidney-selective Pkd1 knockout mice that manifest a fulminant course, with development of large cysts and renal failure in the first 2 wk of life and death by 20 d. This model is suitable to evaluate the efficacy of CFTR inhibitors on retarding the growth of cysts in the distal segments of the nephron, including medullary thick ascending limbs of the loops of Henle, distal convoluted tubule, and collecting ducts. In humans, ADPKD develops slowly and causes renal failure at an average age >50 yr. For these studies, we chose to use this relatively severe model of ADPKD, rather than mouse models that develop disease more slowly, because of the shorter time required for compound administration and the greater likelihood of observing an immediate benefit. Testing of small-molecule CFTR inhibitors in ADPKD mouse models with slower onset should be of further utility in predicting efficacy in human ADPKD. The CFTR inhibitors significantly reduced cyst formation and clinical signs of PKD, as assessed by lower kidney weights, and clinical signs of PKD, as assessed by lower kidney weights, and therefore are not exposed to the same environment as in vivo kidney.

The best compound found in this class was the phenyl-derived analog Ph-GlyH-101, which was more lipophilic than GlyH-101 (logP, 7.11 versus 5.14) and thus likely to have greater systemic absorption and oral bioavailability. Because this study was focused on proof of concept for use of CFTR inhibitors in PKD models, we did not carry out more extensive analysis of in vivo pharmacology and toxicity, as would be necessary for further preclinical development.

The data here indicate that thiazolidinone- and glycine hydrazide–type small-molecule CFTR inhibitors, at concentrations without apparent toxicity or inhibition of cell proliferation, retarded the growth of renal cysts in in vitro and in vivo PKD models. Our data support the conclusion that CFTR-dependent fluid secretion is an important determinant in the development and growth of renal epithelial cell cysts. Antisecretory therapy for PKD would provide an alternative strategy to antiproliferative therapies. Development of cystic fibrosis–like lung disease is unlikely with long-term CFTR inhibitor treatment because of minimal CFTR inhibitor accumulation in lung and the need to inhibit CFTR by >90% to affect lung function. Our results thus support the further preclinical evaluation of small-molecule CFTR inhibitors as possible therapeutic agents to retard cyst growth in human ADPKD.

CONCISE METHODS

CFTR Inhibitors

For synthesis of tetrazolo-CFTRinh-172 (compound T08, 3-[(3-trifluoromethyl)phenyl]-5-[(4-(1H-tetrazol-5-yl)phenyl)methylene] -2-thioxo-4-thiazolidinone), a mixture of 2-thioxo-3-(3-trifluoromethylphenyl)-4-thiazolidinone (100 mg, 0.36 mmol) and 4-(1H-1,2,3,4-tetrazol-5-yl)benzaldehyde (63 mg, 0.36 mmol) in absolute alcohol (1 ml) containing piperidine (1 drop) was refluxed for 30 min. The yellow precipitate was filtered, washed with ethanol, dried, and recrystallized from ethanol to give 97 mg (62% yield) of a yellow powder. Melting point was from 146 to 149°C; ms (ES-): M/Z 434 (M+); 1H NMR (400 MHz, DMSO-d6): 7.78 (d, 2H, carboxyphenyl,
J = 8.2 Hz), 7.80 to 8.00 (m, 5H, trifluoromethyl-phenyl and CH), 8.07 (d, 2H, carboxyphenyl, J = 8.31 Hz), 13.20 (s, 1H, tetrazolo, D2O exchange).

For synthesis of Ph-GlyH-101 (compound G07, N-2-naphthalenyl-2-hydroxyethyl-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]-phenylglycinemethazide), a mixture of 2-naphthylamine (0.72 g, 5 mmol), methyl N-bromophenylacetate (1.15 g, 5 mmol), and sodium acetate (0.82 g, 10 mmol) in 1 ml of water was stirred at 80°C for 5 h. The resultant solid after cooling was filtered and recrystallized from ethanol to yield 0.83 g of ethyl N-(2-naphthalenyl) glycinate (yield 57%, melting point 137 to 138°C). A solution of ethyl N-(2-naphthalenyl) glycinate (1.45 g, 5 mmol) in ethanol (10 ml) was refluxed with hydrazine hydrate (1 g, 20 mmol) for 6 h. Solvent and excess reagents were distilled under vacuum. The product was recrystallized from ethanol to yield 1.14 g of Ph-GlyH-101 (78%, mp 176 to 178°C). A mixture of the hydrazide (2.9 g, 10 mmol) and 3,5-dibromo-4-hydroxy-benzaldehyde (2.8 g, 10 mmol) in ethanol (10 ml) was refluxed for 6 h. The hydrazide that crystallized upon cooling was filtered, washed with ethanol, and recrystallized from ethanol to give 3.64 g (yield 66%) of Ph-GlyH-101. Melting point was 280°C (decomposition); ms (ES−): M/Z 554 (M−); 1H NMR (DMSO-d6): δ 4.1 (s, 2H, CH), 6.5 to 7.5 (m, 14H, 2H, carboxyphenyl, J = 8.31 Hz), 13.20 (s, 1H, tetrazolo, D2O exchange).

Figure 7. CFTR inhibitors slow cyst growth in a Pkd1fl/−;Ksp-Cre mouse model of PKD. (A) Gallery of kidney sections from Pkd1fl/−;Ksp-Cre mice treated for 3 d with DMSO vehicle (C, left) or CFTR inhibitors (5 to 10 mg/kg per d, middle and right). (B) Kidney weights (age 5 d) of non-PKD mice (denoted “wild-type”) and Pkd1fl/−;Ksp-Cre mice treated for 3 d with DMSO vehicle (C) or compounds T08 or G07 (SE, 11 mice per group, *P < 0.01). (C) Histogram of cyst numbers at indicated ranges of cyst areas (kidneys from 11 mice analyzed). (D) Renal function in CFTR inhibitor–treated Pkd1fl/−;Ksp-Cre mice at ages 5 and 9 d. Mice were treated from day 2 onward. Serum creatinine and urea concentrations shown (SE, four mice per group, *P < 0.05 compared with control).
aromatic, NH), 8.5 (s, 1H, CH = N), 10.4 (s, 1H, NH-CO), 11.9 (s, 1H, OH), 12.7 (s, 1H, OH). Synthesis procedures for compounds T01 through T07, T09 through T16, G01 through G06, and G08 through G16 were as described previously,16,22,23 with minor variations.

MDCK Model of Cyst Growth

Type I MDCK cells (ATCC No. CCL-34) were cultured at 37°C in a humidified atmosphere. The basolateral membrane was permeabilized with 250 μg/ml amphotericin B. The hemichannels were filled with 5 ml of 65 mM NaCl, 65 mM Na-glucanate, 2.7 mM KCl, 1.5 mM KH\textsubscript{2}PO\textsubscript{4}, 1 mM CaCl\textsubscript{2}, 0.5 mM MgCl\textsubscript{2}, Na-HEPES, and 10 mM glucose (apical) and with 130 mM NaCl, 2.7 mM KCl, 1.5 mM KH\textsubscript{2}PO\textsubscript{4}, 1 mM CaCl\textsubscript{2}, 0.5 mM MgCl\textsubscript{2}, Na-Hepes, and 10 mM glucose (basolateral; pH 7.3). Short-circuit current was recorded continuously using a DVC-1000 voltage clamp (World Precision Instruments, Sarasota, FL) with Ag/AgCl electrodes and 1 M KCl agar bridges.

In some experiments, MDCK cells in Snapwell inserts were cultured in medium containing 10 μM T08 or G07 for 1 or 48 h. Compounds were washed out with medium for 1 h before short-circuit current measurements.

Embyronic Organ Culture Model

Mouse embryos were obtained at E13.5. Metanephroi were dissected and placed on transparent Falcon 0.4-μm-diameter porous cellulose culture inserts.17 To the culture inserts was added DMEM/Ham’s F-12 nutrient medium supplemented with 2 mM l-glutamine, 10 mM HEPES, 5 μg/ml insulin, 5 μg/ml transferrin, 2.8 nM selenium, 25 ng/ml prostaglandin E, 32 pg/ml T3, 250 U/ml penicillin, and 250 μg/ml streptomycin. Kidneys were maintained in a 37°C humidified CO\textsubscript{2} incubator for up to 6 d. Culture medium containing 100 μM 8-Br-cAMP, with or without CFTR inhibitors, was replaced (in the lower chamber) every 12 h.

For determination of cyst growth, cyst diameters were measured using Image J software. At least 10 cysts per well and three wells per group were measured for each condition.

Cytotoxicity, Cell Proliferation, and Apoptosis

Crystal violet staining18 was used to assess compound effects on cytotoxicity. MDCK cells were incubated for 24 h on 96-well plates and then incubated for 72 h with test compounds at 20 μM. Medium was removed, and adherent cells were fixed and stained for 30 min with 0.5% crystal violet in 20% methanol. Plates were washed with distilled water, stain was extracted with Sorenson’s buffer (0.1 mol/L sodium citrate [pH 4.2] in 50% ethanol) overnight at 4°C, and absorbance was measured at 570 nm. Cell proliferation was assayed using a bromodeoxyuridine (BrdU) cell proliferation assay kit (Calbiochem, San Diego, CA). MDCK cells (104/well) were seeded on 96-well plates and incubated for 72 h with test compounds at 5, 10, or 20 μM. BrdU was added at 60 h of culture. BrdU incorporation was measured according to the manufacturer’s instructions by absorbance at 490 nm. Apoptosis was measured using the *in situ* cell death detection kit (Roche Diagnostics, Indianapolis, IN). MDCK cells were seeded on eight-chamber polystyrene tissue culture–treated glass slides and incubated with compounds T08 and G07 for 72 h at 5, 10, or 20 μM. For embryonic organ culture and *Pkd1*fox/fox:/Ksp-Cre mice, morphologic fields were analyzed per condition. Apoptosis index was calculated as the percentage of nucleus-stained cells.
Histology
Kidneys were fixed with Bouin’s fixative and embedded in paraffin. Three-micrometer-thick sections were cut serially every 200 μm and stained with hematoxylin and eosin. Sections were imaged using a Leica inverted epifluorescence microscope (DM 4000B, Wetzlar, Germany) equipped with ×2.5 objective lens and color CCD camera (Spot, model RT KE; Diagnostic Instruments, Sterling Heights, MI).

Quantification of Cyst Growth
Cyst sizes in micrographs of metanephroi and kidney sections were determined using MATLAB 7.0 software (Natick, MA). A masking procedure was used to highlight all pixels of similar intensity within each cyst. Fractional cyst area was calculated as total cyst area divided by total kidney area. Cysts with diameters >50 μm were included in the analysis. Image acquisition and analysis were done without knowledge of treatment condition.

Assay of Serum Creatinine and Urea
Serum was obtained from whole blood by centrifugation at 5000 × g for 5 min. Serum creatinine concentration was measured using a colorimetric assay kit (Cayman Chemical, Ann Arbor, MI) following the manufacturer’s instructions. Urea concentration was measured using the colorimetric QuantiChrom Urea Assay Kit (BioAssay Systems, Hayward, CA). Creatinine and urea concentrations were determined from optical densities using calibration standards.

HPLC/Mass Spectrometry
Kidneys were homogenized in 50 to 100 μl of PBS for 5 min using an Eppendorf pellet pestle homogenizer. The homogenate was mixed with an equal volume of chilled acetone/ter to precipitate proteins. After centrifugation at 5000 × g for 10 min, the supernatant was evaporated under nitrogen, and the residue was dissolved in eluent (50% CH₃CN/20 mM NH₄OAc). Urine samples were directly diluted 10-fold with eluent. Reversed-phase HPLC separations were carried out using a Waters C18 column (2.1 × 100 mm, 2.5-μm particle size) equipped with a solvent delivery system (Waters model 2690, Milford, MA). The solvent system consisted of a linear gradient from 20% CH₃CN/20 mM NH₄OAc to 95% CH₃CN/20 mM NH₄OAc, run over 20 min, followed by 5 min at 95% CH₃CN/20 mM NH₄OAc (0.2 ml/min flow rate). Mass spectra were acquired on an Alliance HT 2790 + ZQ mass spectrometer (Waters, Milford, MA) using negative ion detection, scanning from 150 to 1500 Da. The electrospray ion source parameters were as follows: Capillary voltage 3.2 kV (negative ion mode) or 3.5 kV (positive ion mode), cone voltage 37 V, source temperature 120°C, desolation temperature 250°C, cone gas flow 25 L/h, and desolation gas flow 350 L/h.

ACKNOWLEDGMENTS
This study was supported by National Institutes of Health grants HL73856, DK72517, EB00415, HL59198, DK35124, and EY13574; Research Development Program and Drug Discovery grants from the Cystic Fibrosis Foundation (to A.S.V.), DK54053 and DK57328 (to S.S.); and Polycystic Kidney Disease Foundation grant 147a2r (to B.Y.). We thank Peter Igarashi for the Ksp-Cre mouse strain. We thank Dr. Songwan Jin for help with image analysis and Liman Qian for mouse breeding.

DISCLOSURES
None.

REFERENCES
16. Ma T, Thigaarajah JR, Yang H, Sonawane ND, Folli C, Galeatta LJ, Verkman AS: Thiazolidinone CFTR inhibitor identified by high-

